

Reactivity with superoxide radical of the Pyr₁₄TFSI Ionic Liquid for Li-O₂ Cells

Michele Piana^{1*}, K. Uta Schwenke¹, Johannes Wandt¹, Irmgard Buchberger¹, Stefano Meini², Nikolaos Tsiouvaras³, Juan Herranz⁴ and Hubert A. Gasteiger¹

 ¹Chair of Technical Electrochemistry, Technische Universitaet Muenchen, Lichtenbergstr. 4, Garching D-85748, Germany
²BASF SE, GCN/EE M311, Ludwigshafen am Rhein D-67056, Germany
³BMW Group, Research Battery Technology, Muenchen D-80788, Germany
⁴Electrochemistry Laboratory, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland

Accepted for publication on 1st June 2015

Ionic liquids are attractive candidates as electrolyte solvents for Li-O₂ cells, primarily due to their low volatility, high anodic stability and low flammability. Specifically, the ionic liquid 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (Pyr₁₄TFSI) has attracted considerable attention, thanks to its electrochemical and chemical stability. In this contribution, the use of such ionic liquid as electrolyte in different Li-O₂ cell setups is investigated [1]. In a one-compartment Li-O₂ cell, the pyrrolidinium ion is reduced on metallic lithium, producing substantial amounts of alkenes and amines. To avoid this, an explored option was the substitution of lithium in the one-compartment cell with lithiated LTO (LLTO). Unfortunately, the absence of an SEI leads to the reduction of O₂ at LLTO, making it not useful as counter electrode for Li-O₂ cell evaluation. All the cell configurations are characterized by a first discharge specific capacity double than that obtained with unreactive electrolytes. The use of an edge-sealed two-compartment LLTO-Vulcan cell resulted in the usual discharge capacity of ≈ 200 mAh g⁻¹_C at the first cycle, eliminating the effects of Pyr₁₄TFSI reduction; nevertheless, the poor cyclability even in this cell design suggests that Pyr₁₄TFSI might not have sufficient long-term stability against the attack of O_2^- during discharge or of oxygen species during charge.

Afterwards we demonstrated, via our recently developed UV-Vis screening method, that $Pyr_{14}TFSI$ unfortunately reacts with the superoxide radical ($O_2^{\bullet-}$) which is produced during the discharge of Li-O₂ cells [2]. To clarify the reaction mechanism of $O_2^{\bullet-}$ with $Pyr_{14}TFSI$, we take advantage of the described formation of $O_2^{\bullet-}$ upon contact between LLTO and O_2 to produce a sufficient amount of degradation products from the reaction of $Pyr_{14}TFSI$ with $O_2^{\bullet-}$ that can be detected by NMR.

- [1] M. Piana, J. Wandt, S. Meini, I. Buchberger, N. Tsiouvaras, and H. A. Gasteiger, J. Electrochem. Soc., 161 (14) A1992-A2001 (2014)
- [2] K. U. Schwenke, J. Herranz, H. A. Gasteiger and M. Piana, J. Electrochem. Soc., 162 (6) A905-A914 (2015)

Keywords: electrolyte; superoxide; stability; ionic liquid; Li-O₂