

Operando electronic-structure analysis for the cathode materials of Li-ion battery by soft X-ray emission spectroscopy

Daisuke Asakura^{1*}, Eiji Hosono¹, Hideharu Niwa^{2,3}, Hisao Kiuchi⁴, Jun Miyawaki^{2,3}, Yusuke Nanba¹, Masashi Okubo¹, Hirofumi Matsuda¹, Haoshen Zhou¹, Masaharu Oshima³, Yoshihisa Harada^{2,3}

¹Research Institute for Energy Conservation, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

²Institute for Solid State Physics, The University of Tokyo, Kashiwa, Chiba 277-8581, Japan
³Synchtortron Radiation Research Organization, The University of Tokyo, Tokyo 113-8586, Japan
⁴Department of Applied Chemistry, The University of Tokyo, Tokyo 113-8586, Japan

Accepted for publication on 14th April 2015

Improving the energy density and power density of electrode materials for Li-ion batteries (LIBs) is highly important to further develop electric and hybrid-electric vehicles. In order to realize the improvements, understanding the charge-discharge mechanisms of the electrode materials from a viewpoint of the electronic structure is indispensable. Recently, electronic-structure analyses for the electrode materials using soft x-ray spectroscopy, which directly reveals the 3*d* orbital of transition metals, have been of particular importance.

In this study we demonstrate *operando* soft x-ray emission spectroscopy (XES) for LiMn₂O₄ which is a typical cathode material of LIB. We developed an *in situ* cell consisting of the LiMn₂O₄ thin-film cathode, a counter electrode and an electrolyte solution by modifying the *in situ* cell for the catalyst of fuel cells¹. The *operando* XES experiments were carried out using ultrahigh-resolution XES spectrometer² at BL07LSU of SPring-8. The charge-discharge experiments were performed by cyclic voltammetry.

The Mn 2p-3d-2p resonant XES spectra revealed redox reaction of Mn³⁺ \leftrightarrow Mn⁴⁺ due to the chargedischarge reactions³. Furthermore, charge-transfer effects between the Mn 3*d* and O 2*p* orbitals for each valence state were clarified by theoretical analyses using the configuration-interaction fullmultiplet calculation⁴. In the presentation, *operando* XES results for other electrode materials will also be reported, and the relationship between the electronic structure and electrochemical performance will be discussed in detail.

References

1. H. Niwa et al., Electrochem. Commun., 35 (2013) 57.

- 2. Y. Harada et al., Rev. Sci. Instrum., 83 (2012) 013116.
- 3. D. Asakura et al., Electrochem. Commun., 50 (2015) 93.

4. (a) Y. Nanba *et al.*, *J. Phys. Chem. C*, **116** (2012) 24896. (b) Y. Nanba *et al.*, *Phys. Chem. Chem. Phys.*, **16** (2014) 7031. (c) D. Asakura *et al.*, *J. Phys. Chem. Lett.*, **5** (2014) 4008.

Keywords: soft X-ray emission; Li-ion battery; cathode material; electonic-structure analysis; redox reaction