

Novel Nanostructured Materials for zinc-air and Li-Air Batteries

Ning Ding¹, Xiaoming Ge¹, Dongsheng Geng¹, Bing Li¹, Jian Zhang¹, Wei Chen^{2,3}, T. S. Andy Hor^{1,2}, Yun Zong¹ and Zhaolin Liu^{1,*}

 ¹Institute of Materials Research and Engineering (IMRE), A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602, Republic of Singapore
²Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Republic of Singapore
³Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Republic of Singapore

Accepted for publication on the 26th of January 2015

This talk will focus on the design and synthesis of nanostructured non-precious metal-based hybrid catalysts for Zn-air and Li-air batteries. The presentation will describe some our works in nanostructured hybrid bifunctional electrocatalysts as air electrode for Zn-air rechargeable batteries, as well as nanostructured porous perovskite and spinel metal oxide catalytic materials as air electrode for Li-air batteries.

In this presentation, I will introduce the fundamental and the most recent and significant scientific progresses made in the fields relevant to Zn-air and Li-air batteries, with emphasis placed on air electrodes. The preparation of MnO₂ nanotubes functionalized with Co₃O₄ nanoparticles and their use as bifunctional air cathode catalysts for oxygen reduction reaction and oxygen evolution reaction in rechargeable zinc-air batteries will be reported. These hybrid MnO₂/Co₃O₄ nanomaterials exhibit enhanced catalytic reactivity toward oxygen evolution reaction in alkaline conditions compared with that in the presence of MnO₂ nanotubes or Co₃O₄ nanoparticles alone. Other bifunctional catalysts for oxygen reduction and evolution reactions in Zn-air batteries include spinel MnCo₂O₄/ nanocarbon hybrids, perovskite lanthanum cobalt manganese oxides/nanocarbon hybrids (LCMO/NC), Co₃O₄ nanoparticles decorated carbon nanofiber and cobalt sulphide/N- or S-doped grapheme etc. I also will report porous cobalt-manganese oxide nanocubes derived from metal organic frameworks and porous perovskite LaNiO₃ nanocubes as cathode catalysts for rechargeable Li-O₂ batteries.

Keywords: nanostructured materials; bifunctional electrocatalysts; Zn-air batteries; Li-air batteries