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Abstract - Physics-based lithium-ion cell models are a 

promising alternative to equivalent-circuit models for future 

battery management systems. However, they also have many 

more parameter values that must be measured or inferred to 

make the model match the behaviors of a real cell. This “system 

identification” problem is significant, and in the past has relied 

on cell teardown and complex and costly electrochemical 

experiments to determine the required parameter values.  

In this paper, we propose a methodology that minimizes the 

need for cell teardown and any accompanying electrochemical 

experimentation. Instead, the model equations are reformulated, 

and specific cell-level laboratory tests are crafted such that the 

current–voltage response isolates certain sets of parameter 

values in the model. These tests are executed on standard cell 

cycling equipment. Simple and fast optimization procedures then 

compute the parameter values directly from the specialized 

lab-test data.  

We present results based on a virtual (simulated) cell, where 

“truth” values for the electrochemical parameters are known for 

comparison purposes. In most cases, the identified parameters 

have relative identification error less than 1%. 

Keywords - physics-based model; lithium-ion model; 

measuring lithium-ion model parameters; system identification  

I. INTRODUCTION 

Battery management systems require cell models to 

estimate state of charge, state of health, available energy and 

power. Presently, due to their computational simplicity and 

robustness, equivalent-circuit models (ECMs) are very widely 

used [1]. These models execute quickly and have relatively 

few parameter values to optimize to make the model 

calculations fit laboratory current–voltage cell-test data. 

However, ECMs lack the predictive capability of 

physics-based models (PBMs). For example, while 

equivalent-circuit models can predict a cell’s current–voltage 

behaviors well, they cannot predict internal cell 

electrochemical variables such as lithium concentrations or 

electric potentials at different spatial locations internal to the 

cell. Knowledge of these internal variables is critical to being 

able to predict and control the instigators of premature aging 

or unsafe operating conditions.  

Physics-based models [2] present possible opportunities to 

control cells to slow aging [3–4]. But, they come with a cost. 

One challenge when using PBMs is their computational 

complexity, but reduced-order models (ROMs) overcome this 

concern [5–8]. Another challenge is that PBMs also have 

many more parameter values that must be measured or 

inferred to make the model equations match the behaviors of a 

real lithium-ion cell. This “system identification” problem is 

significant, and in the past has been done either: 

1) By the cell builders, who know the materials and related 

values because they chose them in their design, or 

2) By cell teardown and electrochemical and physical tests 

designed to measure specific parameter values. This option is 

costly and requires operators having a high level of training. 

Further, measured parameter values sometimes differ 

significantly depending on the measurement techniques used 

and it is not necessarily possible to measure all needed 

parameter values, so some must be fit by optimizing model 

predictions to current–voltage data collected from the cell.  

More recently, Forman et al. reported work done to use cell 

current–voltage data to identify these parameter values [9]. In 

their work, they found that they could identify many but not all 

parameters of a PBM. This paper presented an important 

advance in the field—it showed that (at least many of the) 

parameters can be identified from current–voltage data—but 
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the method was not very practical since it took a 

supercomputing cluster 3 weeks to solve the optimizations. 

In this paper, we propose a new approach to PBM parameter 

identification that significantly reduces the number of 

electrochemical tests that must be performed. If electrode 

materials are unknown, a cell teardown is still needed to find 

electrode open-circuit potential (OCP) relationships. 

Otherwise, no teardown is necessary and simple cell-level 

laboratory tests are run to isolate groups of parameters in the 

model to identify their values. Once data are collected, the 

required CPU time for optimization is several minutes on a 

desktop computer versus weeks on a supercomputer. This, 

combined with a suitable ROM, makes PBMs accessible for 

practical BMS. 

We proceed by first reformulating the PBM in terms of new 

dimensionless grouped parameters. The original set of 

parameters is not completely observable from the current– 

voltage data, but the grouped parameters are. This set of 

grouped parameters is sufficient to be able to simulate all cell 

electrochemical variables, so the simplified model does not 

lose generality. The reformulation also removes the need to 

identify 11 parameter values, which significantly simplifies 

the system-identification problem. If the full original set of 

parameters is needed for some reason, a cell teardown can 

supply the missing dimensions relatively easily. 

Next, we will describe cell tests to determine the cell static 

OCP relationships. Then, we present a way to use pulse tests to 

identify the majority of the PBM parameters. Finally, we show 

how to use electrochemical impedance spectroscopy (EIS) to 

find the remaining values. 

We present results based on a virtual (simulated) cell, where 

“truth” values for the electrochemical parameters are known 

for comparison purposes. The virtual cell’s coupled PDE 

model is simulated using COMSOL and the same set of 

experiments that would be executed in a laboratory. The 

current–voltage data from the simulation are used to identify 

the cell’s parameter values: these identified values are 

compared to the known “truth” values. In most cases, the 

identified parameters have relative error less than 1%. 

II. REFORMULATING THE PDE MODEL 

2.1. ORIGINAL PDE MODEL 

We assume a standard Doyle–Fuller–Newman pseudo-2d 

model of a lithium-ion battery cell. This model is derived in 

detail in [8] and is reviewed here. It comprises four 

partial-differential equations (PDEs) describing electrical 

potential and concentrations of lithium in both the solid and 

electrolyte, plus one algebraic equation describing lithium flux 

density from solid to electrolyte. The PDEs have boundary 

conditions at the cell edges and/or junctions between cell 

regions. In the following, 1d spatial location x = 0 is the 

location of the negative-electrode current collector, x = Lneg is 

the negative-electrode/separator boundary, x = Lneg + Lsep is the 

separator/positive-electrode boundary, and x = Ltot = Lneg + Lsep 

+ Lpos is the location of the positive-electrode current collector. 

1d radial location r = 0 is at a particle center and r = Rs is at the 

surface of a particle.   

Potential in the solid active materials at any point in the 

negative and positive electrodes s(x,t) in V is defined by the 

following PDE and associated boundary conditions: 

 

 

 

In these equations, eff is the effective electronic conductivity 

of the solid matrix in S m–1 and as is the specific interfacial 

surface area of the solid particles in m2 m–3 (equivalently, in 

m–1). 

Potential in the electrolyte e(x,t) in V at any point in the cell 

is defined by the following PDE and associated boundary 

conditions: 

 

Here, eff is the effective ionic conductivity of the electrolyte 

in the porous media in S m–1, and  is the unitless 

transference number of the lithium ions with respect to the 

solvent in the electrolyte. These equations use the shorthand 

 

so κD,eff is not really a free parameter once all other parameters 

are known. 

Lithium concentration in the solid active materials cs(x,r,t) 

in mol m–3 at any point in the negative and positive electrodes 

is defined by the following PDE and associated boundary 

conditions: 

 

Here, Ds is the diffusivity of lithium in the solid in m2 s–1. 

Lithium concentration in the electrolyte ce(x,t) in mol m–3 at 

any point in the cell is defined by the following PDE and 

associated boundary conditions: 
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Here, De,eff is the effective diffusivity of the lithium ion in the 

electrolyte in the porous media, in m2 s–1, and e is the unitless 

volume fraction of the electrolyte in the porous media (also 

known as the porosity of the media). 

Finally, lithium flux density from the solid active materials 

j(x,t) in mol m–2 s–1 to the electrolyte at any point in the 

negative and positive electrodes is defined by the following 

algebraic equation: 

 

In these equations, k0 is a reaction-rate constant, cs,e is the 

concentration of lithium at the particle surface, cs,max is the 

concentration of lithium in the solid when all lithium sites are 

occupied, Rfilm is the resistivity of a surface film in  m2 and 

Uocp is the open-circuit-potential function of the active 

materials, in V.  

Initial concentration of lithium in the electrolyte is denoted 

by ce,0. Initial concentration of lithium in the solid active 

materials is determined from cell state of charge z via 

 

Here, 0 is the unitless electrode stoichiometry when the cell is 

at 0% state of charge and 100 is the stoichiometry when the 

cell is at 100% state of charge. 

Table I lists the complete set of parameters that are required 

if one wishes to simulate the PDE model. (The ordering of 

parameters in the table is the same order with which they were 

introduced in this section.) Further, one also needs to know the 

open-circuit potential (OCP) functions for the two electrode 

active materials. A total of 35 values must be identified, plus 

the two OCP functions. 

2.2. REFORMULATED PDE MODEL 

A close examination of the PDE model reveals that a 

number of the PBM parameters never appear in isolation but 

always appear in groups. For example, eff is always 

multiplied by current-collector plate area A and divided by 

cell-region length L in every equation in which it appears. 

Therefore, we can make a lumped parameter tot that combines 

these three values into a single parameter. When we do this for 

all such groups of parameters, neither A nor L appear by 

themselves in any of the remaining equations. This means that 

they, as well as several other individual parameters, are not 

uniquely observable from current–voltage data. So we must 

reformulate the PDE model in terms of grouped parameters 

that can be observed from current–voltage data. When we do 

so, we find that the resulting grouped parameters are 

dimensionless. 

We begin by defining a dimensionless spatial variable  

such that  in the negative electrode,  in the 

separator, and  in the positive electrode:  

 

Similarly, we define a dimensionless radial variable  

such that . 

Next, we define “total” grouped parameters: 

 

 

 

We also define new electrochemical variables: 

 

These new parameter and electrochemical-variable definitions 

allow us to reformulate the PDE model. 

Electrical potential in the solid active materials at any point 

in the negative and positive electrodes is now defined by the 

following PDE and associated boundary conditions: 

 

TABLE I, LIST OF PARAMETERS FOR ORIGINAL PDE MODEL 

Negative 

electrode 

Separator Positive 

electrode 

   

   

   

 

   

   

   

   

   

 

   

   

   

   

 

   

   
  



 

Jobman et al. (2015) Identification of Lithium-Ion Physics-Based Model Parameter Values  

 

48 Journal of Energy Challenges and Mechanics ©2015  

Electrical potential in the electrolyte at any point in the cell 

is now defined by the following PDE and associated boundary 

conditions: 

 
.
 

Normalized lithium concentration in the solid active 

materials at any point in the negative and positive electrodes is 

now defined by the following PDE and associated boundary 

conditions: 

 

Normalized lithium concentration in the electrolyte at any 

point in the cell is now defined by the following PDE and 

associated boundary conditions: 

 

Finally, lithium flux density from the solid active materials 

to the electrolyte at any point in either electrode is now defined 

by the following algebraic equation: 

 

In this equation, we have assumed that α = 0.5, which is 

common in the literature. 

Initial normalized concentration of lithium in the electrolyte 

is denoted by ce,ratio = 1. Initial normalized concentration of 

lithium in either electrode’s solid active materials is 

determined from cell state of charge z via 

 

Table II lists the complete set of parameters that is required 

if one wishes to simulate the reformulated PDE model. (The 

ordering of parameters in the table is the same as in Table I, 

except that the reformulation removes some parameters from 

the model.) We also still need to know the OCP functions for 

the two electrode active materials. A total of 24 values must be 

identified, plus the two OCP functions. The reformulation has 

removed the requirement for finding 11 parameter values—a 

greater than 25% reduction.  

With this reformulated model, we are still able to simulate 

the potential in the solid and electrolyte and the concentration 

of lithium in the electrolyte exactly; further, we are able to 

simulate the concentration of lithium in the solid as well as the 

lithium flux density to within scaling factors. If we are 

required to simulate these latter two quantities exactly, then 

we still require a cell teardown to measure as, A, L, and Rs. 

These geometric properties are relatively easy to measure 

using SEM imaging. However, we often don’t need the exact 

values of these variables: knowing them to within a scaling 

factor is sufficient when computing power limits based on 

lithium depletion, for example. 

III. OPEN-CIRCUIT VOLTAGE TESTS 

We identify the model parameter values and functions using 

specialized laboratory tests that isolate groups of parameters. 

Equilibrium (thermodynamic) properties are found using 

pseudo-static open-circuit voltage tests; instantaneous 

(resistive) properties are found using pulse tests; and 

intermediate-frequency properties are found using 

electrochemical impedance spectroscopy (EIS) tests. These 

tests, and the parameters that are identified by them, are 

discussed in the following sections. 

3.1. WHEN THE ELECTRODE CHEMISTRIES ARE KNOWN 

The open-circuit potential relationships Uocp(ns) for both 

electrodes are needed in order to compute the overpotential  

in the model equations. Further, we require ns,max, θ0, and θ100 

for both electrode materials to initialize a simulation. 

If the electrode chemistries are known, then some of these 

parameter values are available from the literature. The OCP 

functions Uocp(θ) will be known, and we can compute θ = 

ns/ns,max if we are able to determine ns,max. Therefore, we need 

only find ns,max, θ0 and θ100 for both electrodes. 

To do so, we first charge the battery cell to 100% SOC to 

initialize the OCV test. The test begins by very slowly 

discharging the cell down to 0% SOC. (The desire is for the 

cell to be in a pseudo-equilibrium condition at all times; 

TABLE II, LIST OF PARAMETERS FOR REFORMULATED PDE MODEL 

Negative 

electrode 

Separator Positive 

electrode 

   

   

   

   

   

 

   

   

   

   

   
  



 

Jobman et al. (2015) Identification of Lithium-Ion Physics-Based Model Parameter Values  

 

49 Journal of Energy Challenges and Mechanics ©2015  

however, that would require infinitely long test duration. A 

good compromise is a discharge rate of about C/30.) Then, the 

cell is very slowly recharged to 100% SOC. Voltage and net 

ampere-hours discharged at every point in the test are 

recorded. Cell open-circuit voltage can be approximated as the 

average of the charge and discharge voltages at every SOC 

during the test. 

When the cell is at 100% SOC, then both electrodes will 

have stoichiometry equal to their respective θ100 values. 

Similarly, when the cell is at 0% SOC, then both electrodes 

will be at their respective θ0 values. At every point in the test, 

the OCV is equal to the OCP of the positive electrode minus 

the OCP of the negative electrode at the present electrode θ 

values. To find θ0 and θ100 for both electrodes, we perform a 

nonlinear optimization that matches the cell OCV curve with 

the difference between electrode OCP curves. The 

optimization is initialized with guesses for θ0 and θ100 for both 

electrodes; then, these four values are adjusted to better match 

the OCV to the OCP curves. In MATLAB®, the lsqnonlin 

function from its Optimization ToolboxTM can be used, for 

example. This optimization takes on the order of a few 

seconds to complete. 

Cell total capacity (in mol) is equal to  

 

So, once we have optimized the θ values, we can use the 

maximum discharged capacity Q from the OCV test and the θ 

values to determine the values of ns,max for each electrode. 

3.2. WHEN THE ELECTRODE CHEMISTRIES ARE UNKNOWN 

Different steps are required if the electrode chemistries are 

unknown. We are not aware of any way to avoid a minimal 

cell teardown in this case.  

To find the needed functions and parameters, the cell is 

opened and coin cells are made of negative-electrode active 

materials versus lithium metal and positive-electrode active 

materials versus lithium metal. The same discharge/charge test 

as was outlined in Sect. 3.1 is performed on these coin cells (in 

addition to the full cell). However, for the coin cells, we don’t 

know a priori the voltage limits for the electrodes that 

correspond to 100% and 0% cell SOC. Therefore, we assume 

some voltage limits and charge above the assumed maximum 

voltage and discharge below the assumed minimum voltage to 

ensure that the OCP curves that we identify contain the range 

of stoichiometries that will be needed by the model. 

Averaging the discharge and charge voltages for the coin 

cells at every net ampere-hour point in the test gives us OCP 

relationships as functions of excess lithiation beyond the 

(unknown) initial lithiation  of the coin cell, measured in 

ampere-hours. (When the coin cells are initially charged to the 

starting voltage for the OCP test, there is a nonzero unknown 

amount of lithium present, which must be identified to create 

an accurate model.) The OCP relationships are not yet 

functions of stoichiometry θ. Additional steps will be required 

to convert the OCP relationships to functions of θ. 

We convert net ampere-hours discharged in an OCP test to 

moles discharged, denoted as ñcoin by multiplying by 3600/F. 

By optimizing the fit between the cell OCV and the electrode 

OCP curves, we can find operating points ñcoin,0 corresponding 

to θ0 and ñcoin,100 corresponding to θ100. This is illustrated in 

Fig. 1, which shows OCP curves for example negative- and 

positive-electrode materials versus lithium metal, and the 

OCV curve for the overall cell. It also shows ñcoin,0 and ñcoin,100 

values that optimize the fit between the OCV and OCP curves.  

We have not yet found the initial lithiation of the coin cell, 

 nor the maximum theoretic capacity of the coin cell, 

ncoin,max. It turns out that we will not need to do so. However, 

by the end of the pulse test, we will be able to calculate these 

values from those that have been found, if it is of interest to do 

so. 

In summary, by this point we have determined the general 

shape of the OCP curves. If the electrode chemistries are 

known, then we have also found ns,max, θ0 and θ100 for both 

electrodes. If electrode chemistries are unknown, then we have 

instead found ñcoin,0 and ñcoin,100 for both electrodes and still 

need to find  and ncoin,max to convert ñcoin,0 values into θ 

values. These remaining values will be found by pulse testing. 

IV. PULSE TESTS 

The OCV tests isolated the pseudo-static thermodynamic 

properties of the cell. In contrast, the pulse tests are designed 

to isolate the instantaneous response of the cell to a pulse of 

input current. This corresponds to an ohmic resistance term. 

In the model, lithium concentrations do not react instantly, 

so parameters corresponding to the solid and electrolyte 

 

Fig.1, Example showing relationship between electrode coin-cell OCP functions and cell OCV function. 
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concentration equations are not identified by this test. 

Parameters corresponding to the lithium flux density and the 

two electric-potential equations are found instead. 

Cell resistance is a function of cell SOC as well as the 

magnitude of the input current (resistance is nonlinear). These 

two facts allow us to collect sufficiently rich data to identify 

the majority of the model parameter values using a simple 

pulse test. 

The test is simple. We first fully charge the cell. Then, the 

cell is allowed to rest until it reaches equilibrium. Next, a 

discharge pulse is applied, and the instantaneous change in 

voltage is recorded. This process is repeated at multiple cell 

SOC values and with multiple pulse magnitudes. Charge 

pulses can also be applied, and the instantaneous voltage 

change recorded. Resistance is then computed as the 

magnitude of the voltage change divided by the magnitude of 

the current pulse, and is tabulated versus SOC and rate. 

To use these data to find model parameter values, we first 

formulate cell resistance as closed-form equations in terms of 

the unknown parameter values. Then we use nonlinear 

optimization to adjust the unknown values until the predicted 

resistances match the measured resistances as closely as 

possible. By the end of this step, we will have identified 15 of 

the 24 model parameter values, plus the two OCP functions. 

4.1. CELL RESISTANCE 

We are greatly aided by the reduced-order-model (ROM) 

equations of Lee et al. when determining cell resistance [6,8]. 

In Lee’s ROM, the cell dynamics were approximated, but the 

instantaneous response was computed exactly in closed form. 

Since concentrations (and hence open-circuit potential terms) 

don’t change instantaneously, we can write the immediate 

change in voltage in response to a pulse input as 

 

The lithium-flux-density and electrolyte-potential terms are 

linear, so their limit can be written in terms of Laplace-domain 

transfer functions as  

 

We will see how to evaluate this expression in Sect. 4.2. The 

nonlinear terms can be computed by taking the limit of 

 

where we will evaluate the instantaneous change in jtot using 

transfer functions, and where we compute j0,tot as 

 

 For the pulse tests, ce,ratio = 1 since the pulse is applied when 

the cell is in equilibrium. The parameter kstep is an unknown to 

be found by the pulse-test data. If the electrode chemistries are 

known, then ns,max was already found as part of the OCV test; 

otherwise, it will be optimized as part of the pulse test. In 

either case, the pulse test will optimize ns,0 for both electrodes 

such that we can compute ns from cell SOC z and capacity Q as 

 

If the electrode chemistries are not known a priori, then the 

pulse tests will optimize values for both ns,max and ns,0 for both 

electrodes, where the conversion between full-cell normalized 

electrode concentrations and coin-cell normalized electrode 

concentrations is done via: 

 

This relationship also allows us to solve for  from ns to 

look up an OCP value from the coin-cell experiments. It was 

derived using: 

 

Once we have found ns,max and ns,0, we can compute ns in 

both electrodes for any cell SOC of interest, and from that we 

can compute the stoichiometric operating points via θ = 

ns/ns,max. Therefore, we can now compute the OCP curves for 

both electrodes as functions of θ. 

4.2. TRANSFER FUNCTIONS FOR PULSE TESTS 

In Lee et al. [6,8], a cell ROM is made by linearizing the 

PDE model and creating transfer functions of the 

electrochemical variables. These transfer functions shared a 

common impedance ratio 

 

where  

 

In [6], the charge-transfer resistance was found to be 

 

when expressed in reformulated parameters. However, this 

equation was derived under the assumption that the cell 

current is small, which is not true for the pulse-testing 

system-identification step. In [10], Lee derived a different 

charge-transfer resistance that applies even for large pulses: 

 

We use this formulation of Rct,tot in the following. 
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By the initial-value theorem, we will need to find the limit 

of several transfer functions as s approaches infinity. In the 

limit, the impedance ratio (square root) becomes 

 

This will be substituted into the following transfer functions. 

The transfer function for lithium flux density in the negative 

electrode can be written in terms of the reformulated 

parameters as: 

 

where z =  in the negative electrode. In the positive electrode, 

the transfer function is multiplied by –1 and we substitute z = 3 

– . When s approaches infinity, we have 

 

at the current-collector locations. 

The transfer function for the linear part of the electrolyte 

potential at the positive-electrode current collector is 

 

In the limit as s approaches infinity, this becomes 

 

In summary, pulse-test resistances can be expressed in 

terms of all parameters found by the OCV tests plus the 

additional parameters listed in Table III. Optimizing the 

values in Table III so that predicted resistances match 

measured resistances at different levels of input current and 

cell SOC gives us a little over half of the model parameters. 

Optimizing this set of parameters takes on the order of tens of 

seconds using the MATLAB® Optimization ToolboxTM. 

V. EIS TESTS 

The remaining model parameter values may be found via 

EIS tests. To do so, we measure the frequency response of the 

cell around different SOC values and optimize the remaining 

model parameters so the model frequency response matches 

the measured frequency response as well as possible. 

The small-signal transfer function of a cell can be expressed 

as [8]: 

 

This can be turned into a frequency response by making the 

substitution s = jω. We have already seen transfer functions for 

the lithium flux density and the linear part of the electrolyte 

potential. To evaluate this frequency response, we further need 

transfer functions for the electrolyte concentration ratio and 

the solid concentration. 

The transfer function for solid concentration in the negative 

electrode can be found to be 

 

In the positive electrode, the transfer function is simply 

multiplied by –1. 

The transfer functions for the electrolyte concentration ratio 

are quite lengthy, and we don’t have room to reproduce them 

here. They can be found by taking the transfer functions for 

electrolyte concentration from [6,8], reformulating in terms of 

the new model parameters, and dividing by ce,0. The  

term in the frequency response is absorbed into the transfer 

functions such that only the lumped parameters defined to date 

are needed to express it. 

In summary, a cell’s frequency response can be expressed in 

terms of all parameters found by the OCV and pulse tests plus 

all additional unknown cell parameter values. Optimizing the 

remaining unknown parameter values such that the predicted 

frequency response matches the measured frequency response 

at different cell SOCs give us the complete identified model 

except for , which is a value that we assume in this work 

(but, see discussion in Sect. VII, where we mention an 

additional step that can be used to find this value as well). 

Optimization of this set of parameters takes on the order of a 

few minutes using MATLAB®’s Optimization ToolboxTM. 

TABLE III, PARAMETERS FOUND BY END OF PULSE TESTING 

Negative 

electrode 

Separator Positive 

electrode 
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VI. RESULTS 

As a feasibility test of the proposed approach, we 

implemented the methodology in simulation. This has the 

advantage that the actual parameter values are known exactly, 

so identification results can be verified directly. It does have 

several limitations, however, as discussed in Sect. VII. 

The assumed cell parameter values are from [2] and are 

listed in Table IV. In addition to the parameter values listed in 

the table, we also model the effective conductivities and 

diffusivities as 

; 

we model the electrolyte conductivity (in S m–1) as 

 

the negative-electrode OCP in V as 

, 

and the positive-electrode OCP in V as 

 

In this case, we assumed that we “knew” the chemistries of 

the two electrodes, so simply must find the θ values for both 

electrodes via the OCV tests. These were identified with high 

precision. 

Data for the pulse tests were collected by simulating the 

FOM in COMSOL Multiphysics for different equilibrium 

SOC initializations and for different charge and discharge 

pulse magnitudes. Care had to be taken to add second-order 

smoothing to the input pulse to avoid problems with 

simulation convergence. Resistance was measured as the 

absolute voltage change between the equilibrium voltage and 

the cell voltage measured shortly after the application of the 

current pulse (the short delay was necessary to account for the 

time lag of the second-order smoothing), divided by the 

input-current pulse magnitude. These data, normalized to the 

C rate of the cell, are plotted in Fig. 2. We see that cell 

resistance is a nonlinear function of input-current magnitude 

and SOC. The fact of this nonlinearity is critical for the pulse 

testing to be able to extract multiple parameters from the same 

test. If the resistance were linear, we would not be able to 

distinguish between the components that comprise its 

calculation; because it is nonlinear, we are able to do so. 

Nonlinear optimization was performed to optimize values 

for the parameters listed in Table III. Candidate values for 

these parameters were inserted into the equations that predict 

cell resistance; these resistances were then compared to the 

measured resistances of Fig. 2; the candidate values were then 

adapted to optimize the fit between the predicted and 

measured resistances. At the end of the optimization, the 

difference between the measured and predicted resistances 

was very small (on the order of n), and is plotted in Fig. 3. 

Optimized pulse-test parameter values are presented in 

Table V. 

We see that the conductivities were identified very well. 

The worst-case result was on the order of 2% relative error 

(  for the negative electrode). The kstep parameters were 

identified with negligible error and the film-resistance values 

had high relative error, but low absolute error: the errors were 

not significant at the output of the model. 

Data for the EIS tests were collected using a small-signal 

reduced-order model [8], although different approaches could 

have been used (e.g., see [11]). These data are plotted in 

Figs. 4 and 5. We see some nonlinear variation with respect to 

SOC, but not nearly as much as for the pulse-test data. (This 

uniformity limits our ability to identify different parameters in 

the model uniquely. In a physical cell, we would expect more 

variation than this.)  

Nonetheless, the identification results using this data were 

quite good. Identified parameter values are listed in Table VI. 

The biggest challenge at this point is in estimating the lumped 

electrolyte values Le,mod. All other parameters were estimated 

well. 

TABLE IV, PARAMETERS USED IN SIMULATION 

Symbol Units Negative 

electrode 

Separator Positive 

electrode 

L  μm  128  76  190  

Rs  μm  12.5  — 8.5  

A  m2  1  1  1  

σ S m-1  100  — 3.8  

s m3 m-3  0.471  — 0.297  

e m3 m-3  0.357  0.724  0.444  

brug  — 1.5  — 1.5  

cs,max  mol m-3 26 390  — 22 860  

ce,0  mol m-3 2 000  2 000  2 000  

θ0  — 0.05  — 0.78  

θ100 — 0.53  — 0.17  

Ds  m2 s-1  3.9×10-14 — 1.0×10-13 

De   m2 s-1  7.5×10-11 7.5×10-11 7.5×10-11 

 — 0.363  0.363  0.363  

k  mol-1/2 

m5/2 s-1  

1.94×10-11 — 2.16×10-11 

α  — 0.5  — 0.5  

Rfilm  Ω m2  0.0  — — 
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Fig. 4, Doyle-cell impedance magnitude. 

 

Fig.5, Doyle-cell impedance magnitude.  

VII. DISCUSSION 

These results have demonstrated that the proposed 

methodology works quite well in an ideal setting—when the 

actual cell dynamics exactly match the model of the cell 

dynamics, when measurements are noise-free, and when the 

input to the cell for different tests can be controlled accurately. 

We have begun to apply this methodology to actual 

lithium-ion cells and find that the method also works there, 

albeit with a few caveats. 

It turns out there is some difficulty associated with 

collecting reliable pulse-test data, especially at high 

pulse-current magnitudes. One possibility is that the 

equipment used to generate the pulses is not capable of 

producing ideal Heaviside step functions; in practice, an 

oscillation is evident in the input current as the cell tester 

attempts to converge to the commanded current level, which 

biases the results. Therefore, we use the pulse testing to give 

only approximate values to the parameters in Table III, but 

rely on data collected from the subsequent tests to refine the 

estimates. 

Due in part to the difficulty of collecting reliable pulse-test 

data, we also conduct an additional steady-state resistance test. 

The additional data is helpful in achieving convergence of 

 
Fig.2, Resistance of Doyle cell. 

 

 
Fig.3, Error in estimates of Doyle-cell resistance. 

TABLE V, IDENTIFIED PARAMETERS VIA PULSE TESTS 

Symbol Units 

Negative 

electrode Separator 

Positive 

electrode 

 

 True parameter values 

 S 175.65 164.12 854.38 

 S 3.680×105 
 

5940 

Rfilm,tot  0 
 

0 

kstep s–1 2.077×10-4 
 

3.408×10-4 

 

 Estimated parameter values 

 S 175.64 164.12 854.46 

 S 3.785×105 
 

5944 

Rfilm,tot  1.07×10-7 
 

8.60×10-11 

kstep s–1 2.077×10-4 
 

3.408×10-4 

  

TABLE VI, IDENTIFIED PARAMETERS VIA EIS TESTS 

Symbol Units 

Negative 

electrode 
Separator 

Positive 

electrode 

 
 True parameter values 

Ds,tot s–1 4.01×103 

 

7.23×102 

De,mod mol s–1 6.16×10-4 3.00×10-3 5.76×10-4 

Le,mod mol 2.25×10-1 2.71×10-1 4.16×10-1 

 

– 0.363 

 

 Estimated parameter values 

Ds,tot s–1 4.01×103 

 

7.23×102 

De,mod mol s–1 6.13×10-4 2.98×10-3 5.73×10-4 

Le,mod mol 2.04×10-1 3.12×10-1 1.94×10-1 

 

– Assumed to be 0.363 
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consistent parameter value sets. Further, it allows us to 

identify  and ce,0 uniquely. 

Additionally, the cell model used in the work presented here 

did not consider the effects of a double-layer capacitance. It 

turns out that this capacitance tends to charge and discharge 

quickly so that from a practical point of view it does not have a 

large impact on long-term model predictions.  Nevertheless, it 

does significantly change the EIS results at high frequencies. 

We therefore find it necessary to include the double-layer 

capacitance in our methodology to identify model parameters 

for physical cells. 

Finally, we do not address error bounds on the identified 

parameters within this work. We plan to use the methods 

proposed in [9] to do so in future research. Indeed, results of 

system ID on physical cells is a topic of planned future 

publications. 

VIII. CONCLUSION 

We believe that physics-based models of lithium-ion cells 

will be required by future battery-management systems in 

order to optimize the performance/lifetime tradeoff for large 

battery packs. For this to be practical, we must be able to 

identify the parameter values of the physics-based models. In 

the past, manufacturers have been reluctant to disclose this 

information, so we must find other ways to discover it. 

This paper has proposed a methodology that can be used to 

find physics-based lithium-ion cell-model parameter values. 

We began by reformulating the equations to eliminate 

redundant and unobservable dimensional parameters from the 

model—these parameters are not necessary to being able to 

simulate the model equations. We then proposed OCV, pulse, 

and EIS testing to collect data to be used when finding the 

parameter values. Each test isolated a group of parameters 

such that the optimizations required to perform the parameter 

fits was minimized in scope, which makes it quite fast.  

If electrode chemistries are known, no cell teardown is 

needed. The entire system-identification process can be 

accomplished via cell-level testing only. If electrode 

chemistries are unknown, a minimal teardown is required to 

form coin cells from the electrode materials in order to 

determine OCP data. This is a relatively straightforward and 

inexpensive task. 

We used simulation in this paper to create the data to be 

used by the methodology so that we could have known “truth” 

values for all parameters against which to compare results. 

The identified parameter values agreed with the truth values 

very well in all cases. For physical cells, we mentioned some 

additional steps that should be taken to improve on these 

methods. We plan to publish results for physical cells in the 

near future. 
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necessarily constitute or imply its endorsement, 
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