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 Abstract – Distributed energy systems such as wind turbines or 

tidal power systems share the properties of (1) having a rising 

number of similar installed system setups, (2) being installed 

mostly in remote areas with limited access and (3) needing a high 

system reliability. This makes fault diagnosis and identification 

(FDI) a crucial but challenging part for operation and 

maintenance (O&M) of these systems. This paper will focus on a 

method to use condition information of equal components in 

different machines and under different working conditions, to 

extract useful information for FDI of those components. A 

definition for fleet monitoring for FDI will be introduced. It will 

be shown that by extracting specific features of the components 

condition information and by combining these features from 

different machines, additional FDI information can be gained. 

Therefore, the focus of data analysis is the fleet information and 

less only individual systems information. It will be shown that 

properties of the introduced method can resolve common FDI 

drawbacks, e.g. setting up alarm thresholds. The method is based 

on the calculation of selected features from each system in a high 

dimensional common feature space. The main advantage is the 

absence of absolute measures for FDI and use of relative 

measures between components/machines in the fleet. Besides the 

theoretical approaches, an example using temperature and 

vibration data of 17 bearings test runs (PRONOSTIA data set) 

will be given. The runs of the bearings were performed with 

different speed and load and were only stopped by significant 

degradation. The purpose of the paper is to increase system 

reliability by using fleet information and, therefore, provide 

additional information for FDI. 

 Keywords – Fleet Monitoring, Condition Monitoring, Energy 

Systems. Bearing, Multivariate normal distribution 

I. INTRODUCTION 

 Worldwide an increasing demand for energy can be 

observed. More than 80 % of global energy, which is 

generated from renewable source, is hydro power. In addition 

to that the annual increase is approximately 3 %. There are 

considerable opportunities for hydroelectric plants, since only 

one fifth of technical feasible potential of hydro power has 

been deployed. North America utilized the biggest potential of 

hydro power, approximately 33 %, followed by Europe 

including the CIS 30 %, Australia 27 %, Asia 23 % and finally 

Africa with the lowest percentage of 8 %. [1] [2] 

 Mostly distinction is made between run-of-the-river power 

plant, storage power plant, pumped storage hydro power 

station and tidal power plant. The run-of-the-river power plant 

uses the flow of the river to generate electricity and also low 

drop height is characteristic. Storage power plants certainly 

have a high gradient and use the storage capacity of dams to 

generate electricity. A big advantage of storage power plants is 

that they are both used to cover the electrical base load and 

peak-load operation. The pumped storage power plant also 

offers the capability to pump the water into a catch basin. To 

allow this, the energy, which is available when demand is low, 

is used for example at night. At peak times, electricity can be 

feed in again. The tidal power plant converts the potential and 

kinetic energy from the tides of the sea into electricity. They 

are built in bays and estuaries, which have a particularly high 

tide.  
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 Fig. 1, Selection of hydro power plants. 

 Fig. 1 and Table 1 show the different types of hydroelectric 

plants. For each type the world’s largest power plants are 

listed. Furthermore the diagram shows when the hydro power 

plants were put into operation and how many turbines were 

installed. The bigger the circles, the more total power output 
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the individual power plants have. It is particularly interesting 

to note that tidal power stations are typically equipped with 

rolling bearings, in contrast to the other types of power plants, 

which have almost exclusively plain bearings. Tidal energy 

systems are similar to all distributed energy systems such as 

on- and offshore wind turbines, communal power stations, 

waste-to-energy power stations and others. Distributed power 

system combine the following properties relevant for O&M: 

(1) having a rising number of similar installed system setups, 

(2) being installed mostly in remote areas with limited access 

and (3) needing high system reliability.  

 Using the introduced example of water power plants shown 

in Fig. 1 in all major power plants the turbines are 

concentrated in one place even in one machine hall. Therefore 

the mentioned O&M properties do not apply. By looking at the 

tidal power plants and referring to the defined O&M 

properties: (1) tidal power plants are installed in clusters of 

similar machines and run under similar stream/tidal 

conditions, (2) each turbine is located separately underwater 

and therefore requires increased effort to be accessed and (3) 

are designed to run without onsite support for 6 months [3].  
 

TABLE 1: SELECTION OF HYDRO POWER PLANTS. 

Name of power 

plant 
Country 

Startup 

Operation 

Numbers 

of turbines 

per power 

plant 

Total 

power 

output 

[MW] 

Run-of-river-power plant 

Chief Joseph Dam USA 1979 27 2620 

John Day Dam USA 1971 16 2160 

Beauharnois 

Hydroelectric 

Power Station 

Canada 1961 38 1903 

The Dalles Dam USA 1957 22 1.780 

Nathpa Jhakri 

Dam 
India 2004 6 1.500 

Pumped storage power plant 

Bath County USA 1985 6 3.003 

Ludington USA 1973 6 1.872 

Dinorwig 
Great 

Britain 
1984 6 1.728 

Racoon-Mountain USA 1978 4 1.600 

Shin-Takasegawa Japan 1998 4 1.280 

Storage power plant 

Three Gorges 

Dam 
China 2006 26 18.200 

Itaipú 

Paraguay 

and 

Brazil 

1991 20 14.000 

Guri 
Venezuel

a 
1978 20 10.235 

Tucuruí Brazil 1984 25 8.370 

Sayano-Shushens

kaya Dam 
Russia 1978 8 6.400 

Tidal power plant 

RTT 2000 Wales 2011 1 2 

SeaGen UK 2008 2 1.5 

OCT Scotland 2008 1 1.5 

TidEl Cumbria 2005 2 1 
 

 

 By knowing these challenging properties most of the 

distributed energy systems are equipped with remote condition 

monitoring systems measuring e.g. vibration to estimate the 

condition of the system and sending the data to a centralized 

control center. At those centers the data is analyzed and O&M 

measures are decided.  

 The purpose of the paper is to increase system reliability by 

using fleet information and, therefore, provide additional 

information for O&M. First the problem of fleet monitoring 

will be introduced (II), then the proposed method is described 

(III) and later demonstrated using bearing data (IV). 

II. PROBLEM DEFINITION 

 The problem that is researched in this paper is defined as 

supporting the monitoring effort of distributed energy system 

based on existing machine data. The focus is to detect unusual 

machine behavior. 

 For this purpose the authors define the term fleet monitoring 

as: Monitoring a fleet of similar type or identical machines, 

operating under similar conditions, to detect unusual machine 

behavior of a single machine if compared to the fleet. 

Additionally the introduced fleet monitoring method makes no 

use of design specific quantitative thresholds and no use of 

historical monitoring data. The focus is not on machine 

individual FDI or prognosis of future machine conditions. 

 

III. THEORETICAL APPROACH  

 The method of fleet monitoring is presented with the focus 

on roller bearings and assumes that acceleration over time data 

of a machine fleet is available. 

Features 

 At first k features of m separate bearings Bm of m machines 

of the machine fleet for n time intervals (of equal length) are 

extracted (Fig. 2) resulting in values defined as fk,n,m. In this 

paper the root mean square (RMS), the peak magnitude to 

RMS ratio (Peak2RMS) and the maximum to minimum 

difference (Peak2Peak) are used [4].  
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Fig. 2, Feature extraction method. 
 

Test of normal distribution 

 For each time interval n all extracted features fk,n,m are tested 

if the features in that specific time interval are normal 

distributed. Therefore the Anderson–Darling test with a 

significant level of 5 % is used. This test was chosen because 

of its capability to test a small sample size. The test is valid 
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until a sample size of at least 8. Therefore a machine fleet of 

less than 8 machines cannot be assumed normal distributed 

and therefore not monitored with the method of this paper. [5]  

 Only if all features k are normal distributed for a specific 

time interval n, their mean values 𝑓 ̅𝑘,𝑛  (Eq. 1) and their 

standard deviations σk,n (Eq. 2) are calculated. 

𝑓�̅�,𝑛 =
1

𝑚
∑ 𝑓𝑘,𝑛,𝑖

𝑚
𝑖=1             (1) 

𝜎𝑘,𝑛 = √
1

𝑚
∑ (𝑓𝑘,𝑛,𝑖 − 𝑓�̅�,𝑛)²𝑚

𝑖=1            (2) 

 

 

Multivariate normal distribution 

 The core method for fleet monitoring is the multivariate 

normal distribution (also called multivariate Gaussian 

distribution). It is a multi-dimensional type of univariate 

normal distributions. Fig. 3 illustrates an example of a 

two-dimensional normal distribution for a specific time 

interval n. The abscissa and ordinate axis display two different 

features (f1, f2), their mean values ( 𝑓 ̅1,𝑛,  𝑓 ̅2,𝑛 ) and their 

standard deviations (σ1,n, σ2,n) as characteristic values for a 

standard normal distribution. It is important to note that the 

representation is valid for only a single time interval. Another 

time interval is checked separately from all other time 

intervals. [6] 

    If the criterion on normal distribution of every feature is 

fulfilled, the original values of every dataset are compared to 

the statistically calculated multidimensional values 𝑓 ̅𝑘,𝑛 and 

σl,n. The calculated (double) standard deviations of each 

feature are then used as thresholds (2·σk,n) which equals 

95.45 % of the distribution. The features fk,n,m of each bearing 

Bm are then compared to the 2·σk,n threshold of the specific 

time interval n. If all fk,n,m of each bearing Bm are not within this 

range of tolerance, the bearing could be classified as a bearing 

with unusual behavior.  

    In Fig. 3 an example with just two features, f1 and f2, and 

m=8 Bearings for specific time interval is given. It can be seen 

that the bearings B1 to B4 are all within the tolerated range of 

all features. In contrast, bearings B5 and B6 are neither within 

the tolerated range of f1 nor f2 indicating that these bearings 

might have a unusual behavior. Nevertheless, bearings B7 and 

B8 are not within the tolerance of single features. Bearing B7 is 

only within the tolerated range of f2 and bearing B8 is only 

within the tolerated range of f1. Therefore, both bearings are 

classified as having usual behavior. 
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Fig. 3, Two-dimensional normal distribution for time interval n. 

 

IV. APPLICATION  

Data description 

 For the multivariate analysis of the above described 

features, an already existing dataset was used. The dataset 

descends from the FEMTO-ST Institute (Besançon, France) 

which has done experiments on their laboratory experimental 

platform named PRONOSTIA for a bearings’ life duration 

prognostic challenge called “IEEE PHM 2012 Data 

Challenge” (in the following referred to as Challenge) [7]. The 

objective of the laboratory platform is to provide real 

experimental datasets in a short time. The data describes 

failures of ball bearings during their different operating times.  

 The published datasets of the Challenge represent three 

different load cases. Within the first load case, in total seven 

bearings were damaged at 1,800 rpm and a force of 4.0 kN. 

Additionally, seven bearings were provoked to reach failure at 

1,650 rpm and 4.2 kN. The last load stage was 1,500 rpm and 

5.0 kN. Three bearings were experimentally tested under this 

determined condition. The test was stopped when the 

amplitude of the bearing vibration signal exceeded 20 g.  

During the experiments, a tenth of a second of horizontal and 

vertical vibration signals were recorded each 10 seconds at a 

sample frequency of 25.6 kHz. The first trial of fleet 

monitoring for these bearings is based on the features of the 

horizontal vibration signal because the load was applied in 

horizontal direction. The previously described features of the 

horizontal vibration signal of 17 bearing datasets were 

analyzed within this paper.  
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Fig. 4, Available time intervals n for all 17 bearings. 

 

Results 

 The available time intervals n for each bearing m is shown 

in Fig. 4. Because of a minimum of at least 8 required 

bearings, to assure test for normal distribution, the method will 

not deliver a result after the end of the life time of bearing 

m=16 at time interval n=1637. It has to be noted that always 

all bearings m are tested of each time interval n, assuming that 

all bearings started operating at n=1. 

 The method is implemented as described in section III and 

was tested with the introduced data set. Fig. 5, 6, 7 and 8 

shows the result of 4 selected bearings for a three dimensional 

normal distribution. The normal distributed features (RMS, 

Peak2RMS and Peak2Peak) over time intervals are plotted for 

the bearings m=4, 9, 16 and 17. The ordinate axis represents 

the ratio defined in Eq. (3): 

𝑟𝑎𝑡𝑖𝑜𝑘,𝑛,𝑚 =
|𝑓𝑘,𝑛,𝑚−𝑓�̅�,𝑛|

𝜎𝑘,𝑛
.            (3) 

 Also marked is the 2·σk,n threshold. If two features exceed 

this threshold in the same time interval an unusual behavior is 

detected. The results of all 17 bearings are summarized in 

Table 2. It has to be noted that the grey marked bearings are 

the ones where the criteria of at least 8 bearings in the fleet is 

not fulfilled anymore therefore the method of this paper cannot 

be applied. This is due to the fact that always the same n of all 

bearings is compared and that each bearing has an individual 

life span. Therefore a bearing that is considered damaged by 

[7] does not have any further measurements and falls out of the 

fleet. Additionally Table 2 shows in percentage when the 

unusual behavior was detected as a fraction of the total number 

of measured time intervals n. 

  

 
Fig. 5, Feature distribution ratio of bearing m=4. 

 

 
Fig. 6, Feature distribution ratio of bearing m=9. 

 
Fig. 7, Feature distribution ratio of bearing m=16. 
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Fig. 8, Feature distribution ratio of bearing m=17. 

 

Discussion 

 It can be seen that for all normal distributed bearings an 

unusual behavior before the end of life time could be classified 

using no design specific quantitative thresholds. Bearing m=2, 

8, and 16 show a very early detection of fewer than 6% of the 

total bearing life time. An early classification is not a desired 

result because in this early state of the total life time of the 

bearing the behavior should be still considered as usual 

behavior. By comparing the early detection of bearing m=16 

with Fig. 7 it can be seen that this is due to noisy Peak2RMS 

and Peak2Peak features. It also can be seen that at the end of 

the bearing life time a usual behavior was also classified. 

Therefore further investigations should be done to lower the 

impact of noisy features. This fact shows the dependency of 

selected features of the method. 

TABLE 2: SUMMARIZED RESULTS FOR ALL 17 BEARINGS. 

Bearing m 

Nb. of 

measured 

intervals n 

Nb. of 

normal 

distributed 

intervals 

Interval of 

fist 

unusual 

behavior 

Percentage 

of life time 

1 2803 620 - - 

2 871 444 6 1 

3 2375 620 - - 

4 1428 607 1087 76 

5 2463 620 - - 

6 2448 620 - - 

7 2259 620 - - 

8 911 470 34 4 

9 797 399 420 53 

10 1955 657 - - 

11 751 370 745 99 

12 2311 620 - - 

13 701 337 693 99 

14 230 70 104 45 

15 515 221 491 95 

16 1637 620 100 6 

17 434 165 386 89 
 

V. CONCLUSION 

 In this paper a method for fleet monitoring is given to detect 

unusual machine behavior of a single machine if compared to 

the fleet. The method is applied to vibration data of 17 

bearings. For a fleet size of at least 8 bearings, for every 

bearing in this fleet unusual behavior could be detected before 

the end of the bearing life time. The results show the 

detectability depending on fleet size and feature selection. 

Further research regarding a sensitivity analyses, feature 

extraction and feature interconnectivity is needed.  
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