
 

155  ©2014  

 
 

 

 
ISSN 2056-9386 

Volume 1 (2014) issue 3, article 7 

 

Effect of PV module frame boundaries on cell 

stresses in solar cells 

光伏模块的框架边界对太阳能电池板中应力的影响 

Johannes Schicker1*, Christina Hirschl1, Roman Leidl2 
1 CTR Carinthian Tech Research AG, Europastraße 4/1, 9524 Villach, Austria 

2AIT Austrian Institute of Technology, A-1220 Vienna, Austria 

johannes.schicker@ctr.at 

Accepted for publication on 15th November 2014 

 

Abstract - Usually, stresses in module integrated solar cells are 

obtained by Finite Element (FE) calculations because these 

stresses can hardly be determined by measurements. Apart from 

the knowledge of the material properties, the FE boundary 

conditions have a distinct effect on the results of a FE solution for 

a standard mechanical pressure test. We used different simplified 

approximations to the complex real clamping of pv modules for 

simulating the deformation of the module and hence the stress-

strain situation in the cells. Some deformation results could be 

compared to experimental findings from a standard mechanical 

load test. In this paper we show the bandwidth of results from 

variations of the assumptions which were made for the 

simulations. We found that particularly weak modules, i.e. thin 

frame and thin glass plate, show a strong dependency of cell 

stresses on the boundary conditions of the FE model. Hereby, the 

calculated stresses resulting from one assumption can easily 

deviate for more than 50% from the stresses using another 

assumption, even when the displacements are nearly equal and 

both lie closely to the measured values. Finally, we outline one 

possibility to directly in situ measure the cell strains what could 

help to resolve this uncertainty. 

Keywords – Solar cells, mechanical stresses, standard load test, 

Finite Elements, boundary conditions. 
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边界条件。 

I. INTRODUCTION 

The key to long term operating stability of photovoltaic (pv) 

modules is the integrity of the solar cells. One of the main 

factors responsible for the loss of cell integrity in outdoor 

modules are mechanical stresses due to external loads, as e.g. 

snow, imposed on the module. A good estimate of the arising 

mechanical stresses is a crucial prerequisite to estimate the 

fracture probability of a silicon solar cell. For a module design 

it is also desirable to determine the stresses in advance without 

time and cost extensive experiments. But even for already 

existing modules, due to the inaccessibility of the cells inside 

the module, it is hardly possible to measure the cell stresses 

during load application in a standard mechanical load test. 

Finally, the stresses are usually obtained by simulations using 

Finite Element (FE) analyses. 

A primary component of a realistic model is an adequate 

constitutive model for the materials of the pv laminate and its 

corresponding parameters. Aside from the laminates response 

to external loads, also its mounting and clamping has a distinct 

effect on the module’s behaviour. The mounting of the 

laminate is usually realised by a metal frame which itself is 

clamped onto a metal base frame. Both are subjected to 

deformations. The complex clamping is hardly transferable 

into Finite Element boundary conditions. Hence, some 

simplifying assumptions must be made. The simplest 

boundary condition of the laminate results from the 

idealisation of the frame as rigid. Then the laminate can be 

regarded as fixed at all edges, and either it may rotate freely 

about the edges or it is fully restrained, depending on the 

character of the fitting of the laminate in the frame. 

Implementing into the model the ability of the frame to bend 

under load adds an additional level of complexity. And finally, 

this complexity is added for the base frame, too. 

Three different types of commercial pv modules were 

investigated. On one hand they were subjected to a mechanical 

load test according to international standards (IEC 61215 sub 

clause 10.16) in the test facilities of AIT, while on the other 

hand these tests were simulated at CTR using Finite Element 

analyses. From the experiments the deflections at some 

designated points of the modules were obtained and served for 

calibration of the calculations. Aim of the simulations was to 

determine the cell stresses that arise in the modules.  

The frame geometries of the modules were obtained from 

the manufacturers as CAD data. The laminate thicknesses 

(glass, EVA, cells, back sheet) were also known. The 

characteristics of the module clamping in the test stand had to 

be simplified for the simulation but still should describe the 

bonding condition of the test situation close enough to match 

the actual module behaviour. This led to a systematic study 

how the boundary conditions of the FE model affect the 
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module’s overall behaviour, i.e. the deformations, and the cell 

stress in particular. 

II. MODULE PROPERTIES 

We chose three different types of pv modules for testing and 

modelling. They differed in size, material of the back sheet, 

thickness of the glass, and in the frame geometries. All frames 

were built of the soft aluminium alloy AlMgSi-T66. We 

approximated its stiffness behaviour using a bilinear hardening 

elastic-plastic constitutive law, whereas the geometries were 

taken as detailed as necessary. All cells were 156x156 mm 

multi crystalline solar cells with a thickness of 180 µm. We 

used an isotropic elastic material law for them as proposed by 

Hopcroft [1]. They were encapsulated by 360 µm EVA on 

each side. We assumed the EVA to be strain- and stress-free in 

the unloaded module. Although EVA is known to behave 

visco-elastic (see e.g. [2]), we applied a linear elastic 

behaviour using an initial short term stiffness as we considered 

the duration of the load tests as comparably short. This 

stiffness, however, is not known; and we found contradictory 

values. From a manufacturer we found a Young’s modulus of 

65 MPa, [3], but we doubt this to be valid for cross linked 

EVA. Another value was estimated by polymer experts 

assuming rather something about 10 MPa. For this study we 

used 65 MPa in the first place for all simulations, but then, we 

varied this stiffness in additional simulations, were we used 

both 6 and 0.6 MPa instead for the otherwise identical models, 

and compared the results. To model the sealant between 

laminate and frame we supposed soft sanitary silicon with an 

elastic behaviour with a Young’s modulus of 15 MPa. All 

calculations were done using large deformation theory and 

postulated double symmetry. 

Module type #1 was a 54 cell module with 3.2 mm front 

glass and a lean and low built frame, whereas module types #2 

and #3 had 60 cells and higher and stiffer frames. Module type 

#2 had 4 mm front glass and module type #3 again had a 3.2 

mm thick front glass. The back sheet of module types #1 and 

#2 was a standard TPT foil (a Tedlar/PET/Tedlar composite), 

whereas module type #3 had a pure polyamide foil (Icosolar® 

AAA 3554, Isovoltaic AG). The TPT foil is stiffer than the 

polyamide AAA foil, a Young’s modulus of 1.3 GPa and 5 

GPa, respectively, can be assumed. Furthermore, the cavity in 

the frame where the laminate is to be fitted in varied between 

the frames. It was higher and less deep in the frame of module 

type #2 than in the two others. The free height after inserting 

the laminate in module #2 was 2 times 775 µm, whereas in 

type #1 only 2 times 150 µm, and in module type #3 2 times 

225 µm were filled with sealant. In contrast the embedment 

depth of the laminate was only 5 mm into the cavity of the 

frame type #2, whereas it was 10.5 mm into the frame of 

module #1, and 11.3 mm into frame #3. Fig. 1 shows the three 

frames in their respective relative size and the embedment of 

the laminates. 

 

Fig.1, Sketches of module frames and their respective relative 

sizes. From left: module types #1, #2, and #3.  

In all simulations a uniform pressure load onto the glass of 

the module was applied. For comparability, we only applied 

the lowest load that was not disturbed by secondary effects in 

any of the modules. This load was 2400 Pa, since the backside 

of module #1 was pressed against the base frame at a pressure 

just above 2400 Pa, see Fig. 2. In addition, the frame of module 

type #1 showed plastic yielding next to the mounting point at 

higher loading, whereas both other frames still behaved 

elastically at this load. 

 

Fig.2, At a load higher than 2400 Pa the back sheet of module 

type #1 is pressed onto the supporting beam. 

III MOUNTING SYSTEM OF PV LAMINATES AND FE 

BOUNDARY CONDITIONS 

Industry provides different mounting systems for solar 

modules. Most consist of a base frame of metallic beams with 

a second frame of beams mounted crossways on the first beam 

layer. Then, the module’s frame is clamped onto these upper 

bars. The laminate of glass, solar cells, encapsulant, and back 

sheet was already inserted in the frame cavities and sealed and 

fixed by soft silicon at delivery of the module. 

 
Fig.3, Clamping of the frame to the supporting beam and of the 

beam to the base frame. 
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The mounting system used during the laboratory tests is 

designed to emulate a customary mounting system. It consists 

of an almost rigid base frame, a pair of standard profiled 

aluminium beams used in pv applications is screwed to this 

base frame and the module is clamped to the profiled bars. For 

clamping, a S-shaped piece of aluminium presses the top face 

of the module frame down so that the frame’s lower surface 

has frictional contact to the profiled bar, see Fig. 3. 

The attempt of modelling this scenario in a Finite Element 

analysis revealed several unexpected difficulties and 

disadvantages. First of all, the requirement for modelling 

several separated contact problems increases the calculation 

costs immensely. Then, without knowledge of the pre stress of 

the clamps, it can not be expected to get realistic results. 

Therefore, we began with a simple approximation to the real 

mounting situation and successively refined it. In the 

following we use the term “model” to address the different 

refinements of the FE assumptions for the module bonding 

problem. Fig. 4 sketches the following explanations. 

For the laminate bonding we used two general refinements 

in the Finite Element simulations: first, the pure laminate was 

bonded circumferentially at its edges, addressed as model 1, 

see Fig. 4(a), and second, the laminate was softly restrained in 

the cavity of its frame by entirely filling the gap between the 

laminate’s surfaces and the frame with 2 layers of soft sanitary 

silicon, Fig. 4(e). The following models, except model 9, base 

on the latter and only the kind of bonding of the frame is 

varied. Obviously, bonding the laminate without a frame is just 

a fictitious construct and model 1 just serves for the purpose 

of comparison as representation for an infinite stiff frame. 

The simplest assumption for the frame bond is to 

circumferentially fix the frame’s bottom faces in space. This 

varies the idea of a stiff frame but the frame may twist when 

the off-centred laminate is loaded. This is addressed as model 

2, see Fig. 4(b). The next model, model 3, represents a frame 

on a rigid beam. Here, the frame is only fixed in space where 

it is supported by the beam whereas the remaining lower 

surface of the frame stays unsupported, Fig. 4(c). In a further 

refinement step, we also modelled a flexible supporting beam 

that protrudes from the module frame by about 90 mm before 

it is supported by the base construction, compare Fig. 3. The 

beam is only fixed at the protruding end where it is supported 

by the base frame, Fig. 4(d). The module frame is then fixed 

on the beam, Figures 4(d1) and (d2). In this constellation, the 

module frame may be displaced as a whole when the module 

is pressed down and the beam is bent. But in addition, the 

module may also be twisted at contact to the deformed support. 

In Model 4 the top of the frame is constrained to the bar by 

using a constraint equation to simulate the clamp. The contact 

between the bottom of the frame and the supporting beam was 

assumed to be frictionless. This model was modified by model 

5, in which we removed the constraint equation for better 

convergence of the calculation and only the pressure contact 

remained. 

Models 1 to 5 have in common, that only the vertical 

directions are fixed, whereas the horizontal movements of the 

Fig.4, Laminate bonding conditions: (a) Models 1 and 9: pure laminate bonded circumferentially, (e): in all other models, i.e. 2-8, the 

laminate is restrained in its respective frame. (b) shows a circumferentially fixed frame, (c) shows a frame that is fixed in space at its supporting 

point to the beam, (d) shows the frame on its supporting beam where the protruding end of the beam is fixed. (d1) and (d2) symbolise the 

beam-frame interaction of model (d), i.e. models 4-7. The lighter, horizontal arrows in (a), (c) and (d) are active restraints only in the models 

7-9.  
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module are restrained by symmetry conditions for the module. 

Accordingly, the frame boundary conditions allow for a 

horizontal movement along the beam axis of the frame bond 

when the module becomes bent. This horizontal movement is 

small but increases with the height of the frame. The real 

clamping, however, restrains this movement partially by 

friction. To check the influence of this mobility, some models 

where added that also restrain the horizontal movement where 

the frame is supported. Model 6 is the variation of model 5 in 

which the contact area between beam and frame is replaced by 

common nodes. Model 7 adds to model 6 a horizontal restraint 

at the contact area between supporting beam and base 

construction. Model 8 corresponds to model 3, i.e. a small part 

of the frame’s lower surface is now totally fixed in space. 

Finally we applied a total horizontal constraint to the pure 

laminate edges, i.e. we modified model 1 to model 9. In Fig. 

4(a), (c) and (d) lighter arrows mark these additional 

constraints. There is also a model 10, which is a modification 

of model 9 for cross-checking the results. It will be explained 

later.  

Only the first 6 models were applied to all three module 

types. The models 7 and 8 were only tested with the weak 

module type #1. Model 9 was only used as comparison to 

model 1, and, since in both models no frame is involved, one 

calculation seemed sufficient. This was done with the laminate 

of module type #3, for which also model 10 was adapted. 

The supporting beam in the tests was a thin walled profiled 

bar. Instead of modelling it in detail, we tested the elastic 

deformation vs. force of the beam separately. In the 

simulations we then substituted it by a massive bar with the 

same elastic behaviour. 

IV. SIMULATION RESULTS 

The most obvious difference of the module behaviour for 

different bonding conditions can be seen in Figures 5 and 6. 

Here the deformations are shown for the models 1 and 3, resp., 

i.e. an ideal rigid frame and a flexible frame bonded only at the 

contact point to the supporting beam. Both figures use an 

identical colour translation to the size of the module 

deflections. Due to the deformation of the frame the deflection 

in the centre of the module for model 3 is about twice as high 

as for model 1. 

 

 

Fig.5, Total deformation of model 1 (¼ module) 

 

 

Fig.6, Total deformation of model 3 (¼ module) 

  

The deformation of model 3 as it is shown in Fig. 6 is in 

good agreement with the observed deformation of the frame 

and module. In general, all calculations assuming a flexible 

module frame that is punctually supported agree with the 

behaviour of the tested modules, i.e. the frame buckles where 

it is punctually supported, and the outer frame part is deeper 

than the middle part. The absolute displacement values of the 

tested modules, however, were not achieved due to the fact that 

all of the simulations display slight stiffer module behaviour 

than the test modules. The displacement measurements, 

however, scattered widely from module to module even for the 

same module type. As most likely reason we identified the 

corner joint of the modules, which is not as monolithic as 

modelled. In the real modules, the corner joints are stuck 

together and the joint is movable to some extend. The scatter 

of the measured deformations is higher than the differences 

between the calculated values of all models of one module 

type. From comparing the measured module displacements it 

can therefore not be decided which model is best suited to 

approximate the real clamping situation. Only clear is that 

models 1 and 2 violate the basic deformation criteria of the 

clamped real modules. 

 

 

Fig. 7; Directions of the principal stresses from model 1, i.e. of a pure 

laminate panel circular bonded normal to the panel plane, calculated 

at 2400 Pa pressure. The symmetry planes are on the left and upper 

side, resp.; the bonded sides are right and at the bottom. 
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Fig.8: Directions of the principal stresses from model 3. i.e. a 

laminate panel fixed in its frame and the frame bonded at the position 

of the supporting beam, calculated at 2400 Pa pressure. The symmetry 

planes are on the left and upper side, resp.; the framed sides are right 

and at the bottom. 

  

Figures 7 and 8 show the directions of the calculated 

principal stresses on the bottom side of the cells for model 1 

and 3, respectively. The position of the supporting beam and a 

numbering convention for the cells can be seen in Fig. 9. It also 

shows schematics of the two different types of module-

dimensions, a 54 cell module and a 60 cell module, viewed 

from below. The drawing shows modelled quarters of the 

double symmetric modules with the supporting beams. 

 

 

Fig.9, Cell numbering of the quarter modules, viewed from 

below, and position of the supporting beam: left a module with 54 

cells, right a module with 60 cells. 

 

The assumption of a rigid frame as it is represented by 

model 1 leads to pressure stresses (inverted arrows) along the 

supported laminate, see Fig. 7, with their maximum direction 

normal to the edges. But, considering a punctually supported 

flexible frame as in model 3, see Fig. 8, leads predominantly 

to tensile stresses (outward arrows). Furthermore, the direction 

of the principal stresses changes abruptly after the first column 

of cells. Inside the module part between the supporting points 

all arrows go parallel to the shorter frame side. In all the 

models 3 to 8 the principal stresses in cell 11 are tensile 

stresses having an angle of approximately 45° against the 

frame, whereas in cell 13 the maximum principle stresses are 

parallel to the longer module edges. The bus bars, which were 

not modelled, should go along the longer module edges, 

whereas the steeper deflection goes perpendicular to the bus 

bars direction. The maximum principle (tensile) stresses in the 

centre of the module are orientated in this direction. 

The stresses in the test modules could not be determined, 

but electroluminescence pictures of modules with broken cells 

after cycles of loading and unloading were taken. The cells are 

fracturing brittle and most theories postulate that brittle 

fracture is due to the maximum tensile stresses, where cell 

breakage usually occurs normal to the direction of the 

maximum tensile stress. In the test modules we observed a 

crack pattern that is in agreement with the orientation of the 

maximum principal stresses of Fig. 8 of the punctually 

supported module, i.e. we found cracks in the corner cells 

under an angle of 45° and in cell number 21 under an angle of 

approximately 20° against the longer frame side. 

To compare the different models to each other, we focus on 

the maximum principal stresses in three cells. Nearly all 

simulation models of all three module types show the highest 

principle stress values in cell 53 or sometimes in cell 22. In 

very few calculations the highest value can be found in cell 43, 

but then, the value is only insignificant higher than in cell 53. 

The corner cell, number 11, is of interest because of its 

pronounced 45° direction of the principal stresses. In the 

Figures 10 to 12 the maximum principle stresses in these three 

cells are compared for all variations of the FE boundary 

conditions we applied to the three module types. The massive 

bullets, corresponding to the right y-axes of the graphs, show 

the corrected deflection values in the module centre for 

comparison. The corrected deflection value is obtained by 

subtracting the vertical displacement of the frame at its fixing 

point from the vertical displacement in the module centre. The 

stress values are all evaluated in the centre of the respective 

cells, although specifically in cell 11 and cell 22 sometimes the 

highest values were not found in the middle of the cell. For the 

benefit of legibility the scales of the axes differ in the 

diagrams. 

In Fig. 10 for module type #1 a strong dependency of the 

overall stress level and module deflections on the boundary 

conditions in the Finite Element analysis can be seen. The 

general picture of the simulation shows that the module 

deflection and the stress levels are increasing when the number 

of restraints decreases. The least deflection corresponds to the 

least stresses if only the pure laminate is considered, model 1. 

The highest deflection yields the highest stress level with 

model 5, where we included the supporting beam as a 

deformable component and allowed both the frame and the 

beam to move along the beam axis. This movement, however, 

was very small and hardly noticeable by the eye. The 

horizontal movement was calculated to be 1.4 mm for the 

frame and 0.14 mm for the beam. Comparison of models 6 and 

7 with model 5 shows that the most important constraint is the 

constraint of the frame to the beam in model 6, whereas the 

constraint of the beam itself is not adding much effect. Both 

restraints yield about the same effect as a vertical restraint at 

the mounting point of the frame, model 3. Only model 8, where 

the frame’s mounting point is fully fixed in space, shows a 
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further significant decrease of deflection and stress level, but 

it still does not reach the smaller values calculated for the 

unbending frame of the models 1 and 2. 

 

Fig.10, Stresses and deflections in dependency of various Finite 

Element boundary conditions for module type #1. 

  

Considering the larger module type #2 we observe a very 

similar dependency, namely an increasing stress and deflection 

level with the decrease of restraints, see Fig. 11; only model 1 

does not fit in the picture. Here, the deformation becomes 

smaller when adding a frame, model 2 corresponds to the 

framed model 1. The explanation can be found in the stiff 

frame of module type #2. Here, the pure laminate is stiffened 

by the frame, whereas the soft frame of module type #1 adds 

additional flexibility.  

 

Fig.11, Stresses and deflections in dependency of various Finite 

Element boundary conditions for module type #2 

  

Another observation for the stiffer module can be made: in 

Fig. 10 for module type #1 the stresses in cell 22 are nearly as 

high as the stresses in the centre cell number 53 and even 

higher in some boundary models. Module type #2 has a 

pronounced ranking of stresses: The stress in the centre cell is 

always significant larger than the stress in cell 22 and this itself 

has a pronounced larger value than cell 11. Only the frameless 

model 1 shows a higher value in cell 11 than in cell 22. Since 

there was not much difference in the results of models 6, 7, and 

8, at the weak module type #1, calculation of models 7 and 8 

had been omitted for this module type. However, it can be seen 

in Fig. 11 that the stiff module leads to the comfortable 

situation that neither of the punctual support models 3 to 6 

yields much difference, neither in the deflections of the centre 

of the module nor concerning the stresses. 

Module type #3 is also a large module, i.e. 60 cells, with a 

stiff frame that is comparable to frame #2, but with the same 

glass thickness (3.2 mm) as module #1. In this module, the 

frame adds stiffness to the pure unframed laminate as already 

observed in module type #2, compare models 1 and 2 in Fig. 

12. But different from module #2, in module type #3 the 

stiffness of the frame only reduces the cell stress in the corner 

cell number 11, whereas the stress in cell 22 increases from 

model 1 to model 2 and the stress in cell 53 only decreases 

slightly. We conclude this to be an effect of the thinner glass: 

the frame stiffens only the adjacent part of the laminate. Thus, 

the reduced displacement in the centre of the module is a result 

of the shorter distance in which the laminate is bent.  

As in the other modules the cell stresses and module 

deflections increase with the number of bonds that are 

unrestrained. Here, we added model 9 to the simulations to 

verify this trend. Model 9 is a pure laminate without frame, but 

instead of bonding the edges only vertically, as in model 1, 

they are restrained horizontally, too. It can easily be noticed, 

that both, the vertical displacement of the module centre and 

all stresses decrease from model 1 to model 9.  

 

Fig. 12: Stresses and deflections in dependency of various Finite 

Element boundary conditions for module type #3 

  

Finally we wondered why the pure laminate of module type 

#3 has approximately the same deflection and cell stress as the 

laminate of module #2 although it has a much thinner glass. 

After close examination we realised, that the embedment depth 

into the frame was different: module type #3 is 11.3 mm deep 

embedded into the frame whereas module type #2 has only 5 

mm depth. When bonding the pure laminate, we used the 

embedment depth for applying the edge bonding, i.e. we fixed 

the vertical displacements of the laminate in the area where the 

laminate is embedded in the frame. To check, that the reason 

for an approximate equal deflection in both laminates, i.e. that 
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with the thinner glass and that with the thicker glass, is the 

different depth of bedding we implied model 10, an artificial 

boundary condition, where we reduced the area of constraint 

of module type #3. Model 10 has now the same embedment 

depth of 5 mm as model 1 in module type #2 has. As expected, 

now, the model with with reduced depth of bedding, model 10, 

has a much higher deflection and also higher cell stresses than 

model 1 of the same module type. Now, the comparison of 

pure laminates between the thinner glass, module type #3, and 

the thicker glass, module type #2, meets the expectation. 

V. INFLUENCE OF THE EVA STIFFNESS 

Until this point, we calculated all results using a rather high 

value for the EVA stiffness. This value was an arbitrary choice 

when we started these simulations, and was maintained for the 

sake of comparison. Now, we examine the question whether 

the principle statements we found still hold if the EVA 

stiffness is significantly different from the assumed value.  

It is obvious that the module deflections depend on the EVA 

stiffness, because without EVA only the glass would 

contribute to the bending stiffness of the laminate. A very 

weak EVA can not transmit much force to the cells and hence 

their stresses tend to zero. On the other hand, a very stiff EVA 

transmits bending forces to the cells which are located in the 

tensile zone of the composite plate and, hence, the cells can 

contribute to the bending stiffness of the laminate. Therefore, 

the cell stress must depend on the EVA stiffness.  

We applied different values of the EVA stiffness to the 

models 3 and 5 of the precedent simulations of module type 

#1, without changing anything else. The results are depicted in 

Fig. 13. 

 

Fig.13, Dependency of module deflection and cell stress on the 

stiffness of EVA for otherwise identical simulation models: left in the 

drawing are shown results for model 3 using an EVA stiffness of 0.6, 

6.0, and 65.0 MPa, and right in the drawing are shown the results 

using model 5. 

  

We named the models 3E0.6, 3E6, and 3E65 to express 

model number 3 with EVA stiffness 0.6 MPa, 6 MPa, and 65 

MPa, respectively, and 5E0.6, 5E6, and 5E65 for model 5 with 

EVA stiffness 0.6 MPa, 6 MPa, and 65 MPa, respectively. 

With stiffness the Young modulus is meant. Clearly, 3E65 and 

5E65 are already shown in Fig. 10. As it can be seen, the 

deflections of the modules become larger and the cell stresses 

decrease with decreasing stiffness of the EVA. The 

displacements and stresses of model 5 are higher than those of 

model 3 for each equal EVA stiffness. The stress values in the 

different cells approach each other and tend to zero with 

decreasing EVA stiffness. We conclude, that the previous 

findings stay valid for all stiffnesses of EVA, namely that with 

increasing number of unrestrained module bonds the cell 

stresses and module deflections increase 

VI. ABOUT IN SITU MEASUREMENT OF CELL 

STRAINS 

We have shown that the stresses of the solar cells in pressure 

loaded modules depend on various factors. Even with good 

knowledge of the true behaviour of EVA uncertainties remain 

concerning the true frame behaviour and the appropriate 

boundary conditions in a FE analysis to obtain a good 

estimation of the resulting cell stresses. Measuring these 

stresses directly in situ at the strained cells seems inevitable to 

validate the simulation results. Our expectation is that this can 

be achieved using strain sensors that are applied to the rear 

faces of the cells. The solar cells are very thin and normal 

pressure loading conditions on modules lead basically to stress 

states in the cell plane. Hence, a plane stress state is a 

reasonable proper assumption. Further on, since the cell strains 

of undamaged silicon are considered to be small, a linear 

Hook’s stress strain constitutive law for the cells can be 

assumed so that stresses and strains can interchangeably be 

considered. This justifies the suitability of in-plane strain 

sensors for monitoring cell stresses. 

We suggest attaching 45° strain gauge rosette micro-strain 

sensors (RY89-3/350, HBM GmbH) to the backside of the 

respective cells. These sensors consist of three independent 

strain gauges to capture the normal elongations in three 

coplanar directions of a field of about 5x5 mm. From these 

data the three independent components of a plane strain tensor 

can be determined. Electrically, each sensor leg has to be part 

of a full Wheatstone bridge circuit for optimal sensitivity. The 

connecting cable is then fed through the EVA and the back 

sheet to an external measurement device. Using this layout, we 

expect to be able to determine the cell strains directly while the 

module is loaded in the test stand and thus get the possibility 

to compare the measured strains to those obtained by Finite 

Element calculations. 

VII. CONCLUSION 

We identified three major influencing factors that stiffen a 

module and, hence help to reduce module deflection and thus 

cell stress. These are the glass thickness, the frame stiffness, 

and the embedment depth of the laminate in the frame. The 

deflections and stresses of the module depend strongly on the 

stiffness behaviour of EVA. But also with valid material 

properties of EVA it is inevitable for a realistic simulation of 

the module deformation by Finite Element analysis, to include 
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the frame behaviour in the model and to find a boundary 

condition that is a well suited approximation to the real 

bonding situation. Finally, one should be aware of the fact that 

a small variation of the Finite Element boundary conditions 

may result in a disproportionate larger variation of stresses, 

especially when either frame or laminate or both are weak.  

We further expect that we can measure the cell strains by 

applying strain gauge rosette micro-strain sensors to the cells 

and can calibrate the calculation model with it. 
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